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Kosterlitz-Thouless Transition for the 
Finite-Temperature d = 2 + 1, U(1) Hamiltonian 
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We prove that in the d = 2 + 1 ,  U(1) Hamiltonian (continuous time) lattice 
gauge theory the confining potential between two static external charges grows 
logarithmically with their distance, at sufficiently high temperatures. As it is 
known that for zero or low temperatures and large coupling constant the model 
confines linearly, we have therefore established the existence of a Kosterlitz- 
Thouless transition. Our results are based on a Mermin-Wagner type of 
argument combined with correlation inequalities and known results for the 
two-dimensional (spin) Villain model. 
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1. I N T R O D U C T I O N  

It is by now a well-known fact that the interaction potential of a static 
"quark-antiquark" pair in a 3-dimensional U(1) lattice gauge theory is 
confining. The first rigorous result was probably obtained by Glimm and 
Jaffe. (1) They used a technique developed by McBryan and Spencer (2) to 
prove that the interaction potential increases at least logarithmically with 
the distance. Their result applied to a discrete "time" version of the model 
and at zero temperature for all values of the coupling. Stronger results 
which give linearly increasing potential at zero temperature were obtained 
by G6pfert and MackJ 3) More recently, Borgs/4/ showed that linear 
confinement holds also for low temperatures and strong coupling. His 
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result remains true in the quantum version (continuous "time") of the U(1) 
model. 

The reason why the 3-dimensional U(1) model exhibits permanent 
confinement of static "quarks" is related to the Mermin-Wagner 
phenomenon, ~16'5~ that is, the absence of spontaneous breaking of a 
continuous symmetry at low dimensions. This mechanism implies a priori 
bounds for the decay rate of certain correlation functions which are related 
to the interaction potential. (5'6) 

In this paper we consider a two-dimensional lattice Hamiltonian gauge 
theory, with symmetry group U(1). Such a theory is equivalent to a three- 
dimensional U(1 ) Euclidean lattice gauge theory in the limit of zero lattice 
spacing in "time" direction (see, for instance, refs. 7-9 and references 
therein). We first present a quantum version of the Spencer-McBryan 
ideas (2) to show that the basic Glimm-Jaffe result survives the continuum 
time limit, by proving that the interaction potential is at least logarithmi- 
cally increasing with the distance for all values of the coupling g. The result 
is proved to be true at temperatures/3 ~/> 0 and applies also to any sym- 
metry group whose center contains U(1). ~l~ Further, by the use of 
correlation inequalities we show that for high enough values of (/?g)-1 the 
interaction potential is bounded from above by a logarithmic function. 
Hence, we conclude that at high temperatures (or small coupling) the 
long-distance asymptotic behavior of the potential is logarithmic. Com- 
bined with the results in ref. 4, we have therefore rigorously established the 
existence of a Kosterlitz-Thouless type of transition, with the potential 
changing from linear to logarithmic at a critical temperature To(g) for g 
large enough. Our findings confirm the heuristic arguments of ref. 15. 

In Section 2 we define the model and state the confinement problem. 
The main results and proofs are given in Section 3. 

2. THE M O D E L  A N D  THE C O N F I N E M E N T  PROBLEM 

We shall work in the square lattice Z 2 (unit spacing). 
To have things well defined, we will set the model in a finite square 

volume A c 2 2 (with periodic boundary conditions for instance) and we 
take A ---, 7/2 at the end. In order to have the notation as simple as possible, 
we will not write explicitly the volume dependence in most of the following 
formulas. 

A unit vector in the k (k = 1, 2) coordinate direction will be denoted 
by/?, while 7/2* denotes the set of ordered links in 7/2, 

~x*= { l - ( x ,  x+/~), x e  2 2 , k =  1, 2} 
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To each link l =  (x, x +/~) there corresponds a copy of the Hilbert 
space L2[0,2~z], link variables Ot=O(x,k); 0<~01<2~, and angular 
momentum operators in L2[0, 2~], 

! 0 
Lt=-L(x, k ) =  i 00l 

with periodic boundary conditions. 
The Hilbert space for the model is the tensor product • =  

@x.k L2[ 0, 2~]. The Hamiltonian operator for coupling constants gE>0,  
gM is given by 

H = - g e  ~ 02 ~-0-5/;-g M y, cos[O(x, k ) + O ( x + k , j ) - O ( x + ) ,  k ) - O ( x , j ) ]  
x 

k > j  

We will often write for short 

where 

H= gEHE + g~HM= gE ~ L2-- gM ~ cos Op 
1 p 

Op = ~ O, = O(x, k) + O(x + it, j) - O(x +), k) - O(x, j) 
l e p  

with 0~= - 0  t and p denotes an oriented plaquette in 2 2 (see Fig. 1). 
We now define gauge transformations: given a function g) from ~2 to 

[0, 2re l, i.e., 

q0: x ~ 2 2 --* r s [0, 2~] 

~,C. -4- - + 2  

-0(• 

Fig, 1. An oriented plaquette. 
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they are defined by the map [0, 2=]z2~  [0, 2~] z2, 

O(x, k) -~ O(x, k) - <o(x) + ~o(x + ~) 

A gauge transformation ~ is unitarily implemented by the operator 

U(~) = ~ exp{i[q~(x) - q~(x +/~)] L(x, k)} 
x ,k  

Alternatively, U(~) can be written 

U(g~)=exp {i ~ q~(x)[L(x, k ) -  L(x-fc, k)]} 

Gauge invariance may be stated as 

U((D) HU-I ( (D)  = H 

for all gauge transformations q). 
It follows from (1) and (2) that 

[Q(x), H]  -- 0 

where 

(1) 

(2) 

Q(x) = ~ [L(x, k) - L(x - it, k)] (3) 
k 

Q(x) is the local generator of gauge transformations and by (2) it 
defines a locally conserved external charge with eigenvalues 

q (x)=0 ,  +1, _+2,.. 

Therefore we can decompose ~ into sectors (subspaces) of 
well-defined external charges, each of these sectors being invariant by the 
time evolution operator exp( - i tH) .  They are labeled by functions 

q: x ~ 2 - ~ q ( x ) e Z  

which signal the value of the external charge q(x) sitting at x e Z 2. 
The vacuum state (the ground state of H) belongs to the sector with 

no charges, the one labeled by the function q =_ 0. (8) The Hilbert space Y~ 
allows not only the situation of no external charges, but also any given 
distribution of charges, q. 

We may write the projection operator onto each of these sectors as 

Pq = (2rc)qAi [ e x p ( -  i~" q)] U(q~) d~ 

where q. q~ = ~x  q(x) ~o(x) and d~ - 1-Ix do(x). 
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We are now in a position to define the interaction potential between 
two external charges q and - q  ("quark" and "antiquark" pair) at relative 
distance R. Owing to the translational invariance, we may put the charge 
q at x = 0  and - q  at x =R.  The interaction potential at inverse tem- 
perature /3 is then defined as the difference between the free energy corre- 
sponding to the configuration with the two charges minus the free energy 
of the vacuum sector (no charges). 

More precisely, if we define the configuration q2 by 

q for x = 0 

q2( )C)  = - q  for x=R 
0 otherwise 

the interaction potential V(fl, R) is given by 

v(~,R)=-~lim=ln(Zq2) 
\Zo/ 

(4) 

where Z~2= Tr[exp(-fiH) Pq2 ] and Zo= Tr[Poexp(-flH)]. Here Pq2 is 
the projector onto the sector with the two specified charges and P0 projects 
onto the vacuum sector. [Implicit in (4) is the infinite-volume limit 
A~22.] 

To obtain the interaction potential V(R) at zero temperature we have 
to take first the limit / ~  ov (keeping IAI fixed) and only then taking 
A .~ Z'2: 

V ( R ) = -  lim lira ! (Z"2~ A ~ fi In 
oo ~ \ Z o /  

3. RESULTS A N D  PROOFS 

Our first result may be stated as follows. 

T h e o r e m  1. The infinite-volume limit interaction potential V(fl, R) 
of the two-dimensional U(1) Hamiltonian lattice gauge theory satisfies 

V(fl, R)>~gL(2q-1) d2p 1 - c o s p - R  
(2~) 2 E(p) 

for all values of fi, gE> 0, gM and where E(p)= 2 Z~= 1,2 ( 1 -  cos p~) with 
p.R=plR1 +p2R2. 

822/56/1-2-2 
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Remark. The logarithmic lower bound on V(fl, R) follows from the 
theorem and from the inequality (5) 

f 
~ 1 - c o s p . R  d2p > 1  
_~ E(p) (27t) 2 ~" 2re in [R[ 

ProoL Using Trotter's product formula, we have 

Zq 2 1 
- - = -  lira Sn 
Zo Z o .  ~ 

I (  ) ( 1 lim Tr exp f lgEHe Pq2exp flgMHM 
Z 0 n ~ ov /7 n 

The kernel of the operator exp(--eHE)Pq2 can be easily computed: 

[P~2 e x p ( -  ~He)](0,  0') 

1 12~ - d~ exp{ - iq[q)(0)  - q)(R)] } 
(2~) I"~1 ~0 

x 1~ ~ exp - ~ (O(x, f:) - O'(x, k) 
x , k  m = - - o ~  

(5) 

From (5) it follows that 

Sn--(2~Z)nl.~l dOid~i exp --iq [q)~(0)-q~i(R)] 
i = l  

x exp - HM(Oi+I) 
i = 1  F/ 

x,k [_\flgEf ,,= -oo exp 2 flgE 

+ qo,(x)-q~(x+fc)+2~zm]2}l } 

- - - -  EOi (x ,  k )  - 0~+ , ( x ,  k )  

(6) 

Next we perform an imaginary translation (2~ for each x e A: 
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and estimate the integrand in absolute value to obtain 

IS~] ~< exp{ -nq[e (0 )  -- e(R)] } 

x exp (2 flge x,k 

x T r [ e x p ( - f l g e H e )  e x p ( - ~ g M H ~ ) P ~  n (7) 

We now choose 

or(x) = flgE c R ( x ) ,  x e 2_ 2 
H 

with 

1 ~ c o s p . x - c o s p - ( x - R )  
~ R( x ) =-fAT ~ ~ ~.  F4 p t 

Here A* stands for the set of allowed values of the "momentum" 
variable p. 

The following relations can be easily verified: 

[~(x)_~(x +t~)]2 <fi2g 2 2 1 - c o s p . R  

n 2 IAI p~A* ~,~ E(p) 

and 

~(0)_~(R)=&_~ 2 2 1 - c o s p . e  
n [At p~A* E(p) (8) 

Inserting (7) and (8) in (6) and taking the limit n ~ o% we get 

Zq2 { l 1 - c o s p . R }  
z 0 ~ e x p  - ~ g e ( 2 q - 1 ) ~  2 (9) 

p e A *  E(p) 

Finally, taking the logarithm of (9) and the limit A .~ Z 2, we obtain 

V(fl, R)>~gE(2q_l) f ~ d2p 1--cosp.R 
(2~# e(p) (lO) 

and this ends the proof of the theorem. 
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Remarks, 1. Obviously, as the estimate (10) does not depend on fi, 
it holds also for fi = oo (zero temperature). 

2. As pointed out in the Introduction, the reason for the existence of 
permanent confinement (at least logarithmic) is due to the existence of a 
global, two-dimensional, U(1) symmetry in addition to the local gauge 
symmetry. This is manifest in expression (6) by the transformation q~(x) --, 
~9~(x) + ~ (i fixed, ~ E [0, 27z], Vxc A). The Mermin-Wagner mechanism 
forbids the spontaneous breaking of such a symmetry and imposes (6) an 
a priori decay for correlations of functions of the q~. This is at the root of 
the validity of the bound (10) for all values of fl and g. 

To proceed further, let us define an expectation value of an observable 
A(0, e) by 

( A )(flgE, flgg) 

, ) = ~ l i m  ~ doodle A(O, ~) 

x H exp - Hg(Oi+t) ~I 
/ = l  n x,k (\flgEJ 

x ~ e x p [ O i ( x , k ) - O i + l ( x , k ) - ~ 0 , ( x ) - ~ 0 , ( x + f c ) + 2 ~ m ]  2 
m = - - o o  

(11) 

where Z stands for the obvious normalization factor. 
Correlation inequalities (li 131 may be used for the ferromagnetic 

coupling in (11) to give, for gg  >~ O, 

( A )(flgE, O) ~ ( A )(fige, flgM) (12) 

If we choose 

A = exp{ -iq[~0(0) - cp(R)] } (13) 

then, considering (5) and (11), the left-hand side of (12) is given by 

1 
(A) ( f ige ,  0) = ~-- Tr [Pq~ exp( - f lgEH~)]  

mE 
(14) 

where ZE = Tr[Po exp( -- flgEHE)]. 
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By using the kernel (5) in (14), one finds 

(A ~(flgE, O) 

1 1 ,2~ 
- Z--e (2~) I'll Jo dg~ exp{ -iq[qo(0) - ~0(R)] } 

X** ~ ' (2 / r '~1/2~ 2 exp x.~ [\flgEJ k=-~ 2 flgu [~~176 +fc)+ 2~zm]2 

(15) 

But (15) is exactly the two-point function of the two-dimensional 
(spin) Villain model (the periodized Gaussian approximation for the plane 
rotator) at an effective inverse temperature f l*= (/?ge)-1. 

For the two-dimensional Villain model the following result holds 

T h e o r e m  (Frohlich and Spencer~14~). There exists some finite 
constant fl* such that for fl* > fl# 

(exp{ -iq[~0(0) - q)(R)] } )(fi*) ~> const .exp - ~ ln(1 + IRI) 

for some positive/3' = fl'(/?*), and f l ' ~  ~ as f l * ~  oo. 

By taking logarithms in inequality (12) and using the above theorem, 
we obtain the following result for our model. 

T h e o r e m  2. For the two-dimensional U(1) Hamiltonian gauge 
theory there exists a constant rio such that for fl < flo 

~ - 2 

for some positive f l ' =  fl'(fl), and f i ' ~  0 as fi ~ 0. 
Thus, Theorem 2 gives an upper bound for V(fl, R) for fl sufficiently 

small. As Theorem 1 provides a lower bound for all values of fi, we con- 
clude that for small fl, V(fl, R) has for large R a logarithmic behavior. This 
is to be compared with a result due to Borgs, (4) showing that V(fl, R) is 
linearly increasing for large values of fl and g. This configures a Kosterlitz- 
Thouless transition for the model we are dealing with, whose phase boun- 
daries are sketched in Fig. 2. 

In Fig. 2, region I corresponds to logarithmic confinement, as estab- 
lished in the present paper, while region II is a linearly confining one, as 
showed by Borgs. (4) Probably the phase boundary (dotted line) extends 
down to g =  0, as suggested by the work of G6pfert and Mack, (~) which 
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Fig. 2. A sketch of phase boundaries. 

> 

gives linear confinement in the entire T= 0 line in the case of a nonzero 
lattice spacing in time direction. But we know of no proof of this in the 
continuous time model. 
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